🧭 Final Day Plan β€” 8:30am–12:20pm#

Note

Theme: From Merge to Meaning to Graph


πŸ•— 8:30–9:00 – Recap & Motivation#

  • Why we merge: join realities

  • Why we egen/by: summarize for clarity

  • Why we graph: show what we now believe


πŸ•˜ 9:00–10:00 – Live Merge & Data Structuring#

clear
use transplants, clear
merge 1:1 fake_id using donors_recipients.dta
tab _merge
drop if _merge != 3

Then:

egen tag_group = tag(don_ecd gender)
egen group_mean_age = mean(age), by(don_ecd gender)
egen group_size = total(tag_group), by(don_ecd)

List example:

list don_ecd gender group_mean_age group_size if tag_group

πŸ•™ 10:00–11:00 – Survival Setup + KM Graph#

gen f_time = end_d - transplant_d
format transplant_d end_d %td
stset f_time, failure(died)
stsum
sts graph, by(don_ecd)
graph export survival.png, replace

Then if time permits:

stcox don_ecd age

πŸ•š 11:00–11:30 – Bar + Line Overlay (tx_yr.dta)#

use tx_yr, clear
graph bar not_working, over(yr) ylab(0(50)250) ///
|| line total yr, lcolor(blue)

πŸ•¦ 11:30–12:00 – Overlay Scatter (gendered weight)#

use transplants, clear
twoway ///
(scatter rec_wgt_kg age if gender == 1, mcolor(blue)) ///
(scatter rec_wgt_kg age if gender == 2, mcolor(red)) ///
legend(order(1 "Male" 2 "Female"))

πŸ§ͺ 12:00–12:20pm Lab Instructions#

Lab 5 Goal: Apply merge, egen, group stats β†’ build clear graphs. Remind:

  • Label axes and variables

  • Export to .png

  • Don’t forget log using


πŸ“¦ One-Liner Summary for Students:#

Merge the files. Tag and summarize by group. Plot what matters. Export what you trust.